MML-Based Approach for Finite Dirichlet Mixture Estimation and Selection

نویسندگان

  • Nizar Bouguila
  • Djemel Ziou
چکیده

This paper proposes an unsupervised algorithm for learning a finite Dirichlet mixture model. An important part of the unsupervised learning problem is determining the number of clusters which best describe the data. We consider here the application of the Minimum Message length (MML) principle to determine the number of clusters. The Model is compared with results obtained by other selection criteria (AIC, MDL, MMDL, PC and a Bayesian method). The proposed method is validated by synthetic data and summarization of texture image database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online clustering via finite mixtures of Dirichlet and minimum message length

This paper presents an online algorithm for mixture model-based clustering. Mixture modeling is the problem of identifying and modeling components in a given set of data. The online algorithm is based on unsupervised learning of finite Dirichlet mixtures and a stochastic approach for estimates updating. For the selection of the number of clusters, we use the minimum message length (MML) approac...

متن کامل

Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model

Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model Mohamed Al Mashrgy, Ph.D. Concordia University, 2015 Recent advances in processing and networking capabilities of computers have caused an accumulation of immense amounts of multimodal multimedia data (image, text, video). These data are generally presented as high-dimensional vectors of features. The availability of...

متن کامل

Positive Data Clustering Using Finite Inverted Dirichlet Mixture Models

Positive Data Clustering Using Finite Inverted Dirichlet Mixture Models Taoufik BDIRI In this thesis we present an unsupervised algorithm for learning finite mixture models from multivariate positive data. Indeed, this kind of data appears naturally in many applications, yet it has not been adequately addressed in the past. This mixture model is based on the inverted Dirichlet distribution, whi...

متن کامل

Image Texture Classification Based on Finite Gaussian Mixture Models

A novel image texture classification method based on finite Gaussian mixture models of sub-band coefficients is proposed in this paper. In the method, an image texture is first decomposed into several sub-bands, then the marginal density distribution of coefficients in each sub-band is approximated by Gaussian mixtures. The Gaussian component parameters are estimated by an “EM+MML” algorithm wh...

متن کامل

Unsupervised Selection and Estimation of Finite Mixture Models

We propose a new method for fitting mixture models that performs component selection and does not require external initialization. The novelty of our approach includes: a minimum message length (MML) type model selection criterion; the inclusion of the criterion into the expectation-maximization (EM) algorithm (which also increases its ability to escape from local maxima); an initialization str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005